

    
      
          
            
  
Welcome to Zest Race Predictor’s documentation!

Zest Race Predictor (ZRP) is an open-source machine learning algorithm that estimates the race/ethnicity of an individual using only their full name and home address as inputs.
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  # Contributor Covenant Code of Conduct

## Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual identity
and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

## Our Standards

Examples of behavior that contributes to a positive environment for our
community include:


	Demonstrating empathy and kindness toward other people


	Being respectful of differing opinions, viewpoints, and experiences


	Giving and gracefully accepting constructive feedback


	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience


	Focusing on what is best not just for us as individuals, but for the
overall community




Examples of unacceptable behavior include:


	The use of sexualized language or imagery, and sexual attention or
advances of any kind


	Trolling, insulting or derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or email
address, without their explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting




## Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

## Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

## Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
abetterway@zest.ai.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

## Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

### 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

### 2. Warning

Community Impact: A violation through a single incident or series
of actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.

### 3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

### 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior,  harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within
the community.

## Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
[https://www.contributor-covenant.org/version/2/0/code_of_conduct.html][v2.0].

Community Impact Guidelines were inspired by
[Mozilla’s code of conduct enforcement ladder][Mozilla CoC].

For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available
at [https://www.contributor-covenant.org/translations][translations].

[homepage]: https://www.contributor-covenant.org
[v2.0]: https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations
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Problem Statement

To comply with federal fair lending laws, banks and credit unions must prove they don’t discriminate based on race and other protected statuses. But lenders aren’t allowed (except in mortgage lending) to ask the race of the applicant. And, even in mortgage lending, almost a third of applicants put nothing down.

In the absence of data, lenders, regulators and credit bureaus have to guess. The de facto way to do that is with a simple formula called Bayesian Improved Surname Geocoding. The RAND Corporation developed BISG 10+ years ago to study discrimination in health care. It brought much-needed objectivity to fair lending analysis and enforcement with a simple formula that combines last name and ZIP code, or Census tract, to calculate the best estimate. RAND said BISG was right at least 9 out of 10 times in identifying people as Black, especially in racially homogenous areas.

The problem is that our country is not racially homogenous, and the predictiveness of surnames gets less accurate every year as neighborhoods diversify and densify, and as the rate of racial intermarriage increases. A 2014 Charles River Associates study on auto loans found BISG correctly identified Black American borrowers 24 percent of the time at an 80 percent confidence threshold. The Consumer Financial Protection Bureau, using a different set of loans, found that BISG correctly identified only 39 percent of Black Americans.

We’re not saying to throw BISG out, but let’s use it only until a better alternative is ready. Data science has advanced since Bayesian algorithms debuted in the 1800s. We should harness the latest tech for good, and there’s some promising work already being done out there.

Zest’s data science team developed the Zest Race Predictor (ZRP) as a BISG replacement. At its core is a machine-learning model that estimates race using first, middle, and last names and a richer location data set gathered by the US Census.  By using more data:  full name and many more location attributes – and better math:  gradient boosting – ZRP significantly improvess the accuracy of race estimation.



Modeling Data

Names, Addresses, and Class Labels

The initial model development dataset includes voter registration data from the states of Florida, North Carolina, and Georgia. Summary statistics on these datasets and additional datasets used as validation can be found here [https://github.com/zestai/zrp/blob/main/dataset_statistics.txt] .


	Consult the following to download state voter registration data:
	
	North Carolina [https://www.ncsbe.gov/results-data/voter-registration-data]


	Florida [https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UBIG3F]


	Alabama [https://www.alabamainteractive.org/sos/voter/voterWelcome.action]


	South Carolina [https://www.scvotes.gov/sale-voter-registration-lists]


	Georgia [https://sos.ga.gov/index.php/elections/order_voter_registration_lists_and_files]


	Louisiana [https://www.sos.la.gov/ElectionsAndVoting/BecomeACandidate/PurchaseVoterLists/Pages/default.aspx]








Voter registration data was selected because it is a large, publicly-available database of names, addresses and ground truth labels (self-reported race and ethnicity).  Ideally a more comprehensive list of names addresses and self-reported race/ethnicity from the US Census Bureau would be used to train the model, but such a dataset is not publicly available.

American Community Survey (ACS) Attributes

The US Census Bureau details that, “the American Community Survey (ACS) is an ongoing survey that provides data every year – giving communities the current information they need to plan investments and services. The ACS covers a broad range of topics about social, economic, demographic, and housing characteristics of the U.S. population. The 5-year estimates from the ACS are “period” estimates that represent data collected over a period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. The 5-year estimates are available for all geographies down to the block group level.” ( Bureau, US Census. “American Community Survey 5-Year Data (2009-2019).” Census.gov, 8 Dec. 2021, https://www.census.gov/data/developers/data-sets/acs-5year.html. )

ACS data is available in 1 or 5 year spans. The 5yr ACS data is the most comprehensive & is available at more granular levels than 1yr data. It is thus used in this work. We elaborate below on how ACS data is used.




Model Development



	Data Preparation: Initial dataset definition, sampling, data cleansing, feature creation, target and data selection


	Model Training: Algorithm selection, hyperparameter selection


	Model Evaluation: Model validation, benchmarking and model performance








Data Preparation

The modeling process began with data acquisiton. The acquired voter registration data, Census shapefiles, and ACS demographic data contain a super-set of information of the following nature:


	Data used for processing


	Data used for model training


	Data used for model validation


	Data not appropriate for modeling (later excluded or not used)





Overview

Initial versions of the ZRP were place-specific.  That is, a given zip code was a predictor in the model.  This resulted in a model that was limited to work in the specific places in which it had been trained.  However, not all states release their voter records, and so the challenge was to make a model that could be trained using voter registration data from some small number of states, yet still predict accurately in other unseen geographic areas.

To address this challenge, the next generation ZRP models use Census block group, tract, or zip code attributes.  During the summer of 2021, Harvard undergraduate Austin Li joined the Zest team to develop this next generation of models.  Austin developed a method of geocoding an address to look up its Census block group, tract, or ZIP code by leveraging the Census ARCGIS TIGER/Line Shapefiles <https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>.  The smallest, most granular, matching area (block group, tract, or zip code) is then used to look up attributes of that location in the American Community Survey database, which provides demographic data at the block group, tract and zip code levels.

Many ACS attributes were normalized to percentages of total or to standard statistics (e.g., % of the block group that self-reported they were African American, or median household income for the tract).  By using the normalized attributes of the location instead of the location itself, the model ZRP model can now transfer learnings from one block group, tract or zip code to another and thus operate nationwide.

In order to facilitate fast translation from address to Census block group, tract, or (in the worst case) zip Code, attributes, lookup tables are compiled.

To build the training and test datasets, the voter registration data is joined with ACS attributes via the address matching process described above.

The full list of predictive variables in the model can be found here. <https://github.com/zestai/zrp/blob/main/zrp/modeling/feature_definitions.md>



Data Sampling

In order to develop the model, representative data with self-reported name, address, and race needed to be acquired. The current ZRP data preparation includes 2021 Florida, Georgia, and North Carolina voter registration datasets. Exploratory data analysis (EDA) exposed data that was not appropriate for modeling. Following EDA each dataset was reduced based on the following filtration criteria records were removed that: requested public record exemption, did not contain adequate address information, exhibited high missingness, non-unique, or did not self-report race or ethnicity.

The model development dataset is established when treating the voter registration data as one dataset. The model development dataset was split into 4 distinct subsets: one for training, one for internal validation, one for final testing, and a hold out to support ongoing model development. The hold out contains about 30% of the data by state. Aiming for an unbiased representation of the data, we employed random sampling when choosing the dataset splits. The multi-split strategy ensures that the model is not overfitting to the training dataset; that it will be robust to future, unseen data; that the performance is not overstated; and that updates can be implemented. Please refer to the split table below to see the current splits.



	Dataset

	Total Obs

	Total Train Obs



	Florida

	14,215,868

	5,049,617



	Georgia

	6,676,561

	1,942,893



	North Carolina

	6,586,528

	2,574,455








Data Summary

The disaggregated race and ethnicity class information is tabulated below for the training dataset and the United States popultion estimates.



	Class

	Train Count

	Train Percent

	National Estimate (%)



	Asian American and
Pacific Islander

	215,866

	2.3%

	6.1%



	American Indian
and Alaskan Native

	41,872

	0.4%

	1.3%



	African American
or Black

	2,001,315

	20.9%

	13.4%



	Hispanic or Latino

	1,182,740

	12.4%

	18.5%



	White

	6,125,172

	64.0%

	60.1%






Note there was no consistent classification of race identities of multiracial or other so they were not included in model development.



Sample Weights

Sample weights were consutructed such that proportion of the sample weight associated with each race/ethnicity in the training dataset mimics the national distribution of race/ethnicity. The look-a-like sample weighting was done at the state level.



	state

	race

	sample_weight



	Florida

	WHITE

	0.9406



	Florida

	BLACK

	0.9770



	Florida

	AIAN

	3.9046



	Florida

	HISPANIC

	0.9565



	Florida

	AAPI

	2.8882



	Georgia

	WHITE

	1.1152



	Georgia

	BLACK

	0.3718



	Georgia

	AAPI

	1.6984



	Georgia

	HISPANIC

	3.4281



	Georgia

	AIAN

	2.6944



	North Carolina

	WHITE

	0.8509



	North Carolina

	BLACK

	0.5763



	North Carolina

	AIAN

	2.1578



	North Carolina

	HISPANIC

	5.4349



	North Carolina

	AAPI

	4.0384









Algorithms & Model Training Process


Algorithm Selection

The problem of predicting race falls within in the class of problems for which supervised machine learning classification algorithms are used. Supervised machine learning algorithms try to create a functional dependence between data points and a given target variable. In this case, the algorithms created a functional dependence between data related to an individual’s name as well as his/her address, and their race/ethnicity.  Classification algorithms try to predict a finite number of target choices; for instance: Black, White, Hispanic, AAPI, AIAN, or Multiracial.

Classification models can be classified according to the mathematical form of the underlying prediction function: linear and non-linear models. In linear models, the separation between distinct classes, or the relationship between different continuous variables, can be modeled using a linear function. Logistic regression, traditionally used for credit modeling, is an example of a linear model, while decision trees and neural networks are non-linear models.

Several types of classification models could be used to address the problem of predicting race. The pros and cons of several options are
ed in the table below.



	
	Model Type

	Benefits

	Limitations



	
	
	
	


	1

	Logistic Regression

	Low variance

	High bias



	Easy to interpret

	Underperforms when feature space is large



	
	Relies on transformation for non-linear features



	2

	Naive Bayes

	Computationally fast

	Relies on   independence assumption; will perform badly if assumption breaks down



	Simple to implement



	Works well with high   dimensions



	3

	Support Vector   Machine (SVM)

	Performs similarly to logistic   regression with linear boundary

	Susceptible to overfitting   depending on kernel



	Performs well with non-linear   boundary depending on the kernel

	Sensitive to outliers



	Handles high dimensional data   well

	Not very efficient with large number of observations



	4

	Random Forest

	Reduced variance in comparison   with simpler tree models

	Not as easy as simpler trees   to visually interpret



	Decorrelates trees

	Trees do not learn from each other



	Handles categorial and   real-valued features well

	


	5

	Extreme Gradient   Boosting (XGBoost)

	Handles missing values easily   without preprocessing

	Susceptible to   overfitting if number of trees is too large



	Highly performant and executes   quickly



	6

	Neural Network

	Excellent   performance on highly complex problems, such as image classification, natural   language processing, and speech recognition

	Many parameters to tune



	Sensitive to missing data and   non-standardized features






Bayseian and linear models were ruled out as the variables (income, education attainment) are not independent, and the decision surface is not linear.  Random forest was also ruled out due to the better performance from XGBoost that is by now well-known.

XGBoost is a tree model based on a boosting algorithm. It reduces variance and also reduces bias. XGBoost reduces variance because it uses multiple models trained on random subsets of the data and employs bagging (or averaging) like a Random Forest.  XGBoost simultaneously reduces bias by training trees sequentially using a technique known as boosting, where each subsequent model is trained based on additional observations and the errors made by by previous models. Since XGBoost sequentially learns using the errors from previous iterations, it often outperforms Random Forest.

The biggest concern associated with XGBoost models is overfitting. Therefore, it is important to tune the hyperparameters to make sure the model does not overfit to the training dataset and that it exhibits similar performance on both the training and hold out datasets.

While tree-based models excel on tabular data like we have here, Neural Networks can handle even more complex prediction problems.  Yet neural networks come with addiitional complexity.   Due to the tabular nature of the data, and in an attempt to keep  things simple, we selected XGBoost for the ZRP.  A neural network algorithm would be more appropriate if we were considering pictures of people in addition to tabular attributes.



Feature Engineering

The feature engineering pipeline takes name and ACS features as input to prepare data for model build or to make race predictions (also refered to as race proxies). First, the data is reduced to required modeling features using ‘Drop Features’. Next compound last names are handled by splitting compound last names across n rows. Let’s take a look at an example if person is named Farrah Adeel Len-Doe, the input to ‘Compound Name FE’ will be one dedicated record, as seen below:



	ZEST_KEY

	first_name

	middle_name

	last_name

	house_number

	street_address

	city

	state

	zip_code



	Z00100

	Farrah

	Adeel

	Len-Doe

	123

	N main st

	burbank

	ca

	91505






That expands to two rows with unique last name values per row.



	ZEST_KEY

	first_name

	middle_name

	last_name

	house_number

	street_address

	city

	state

	zip_code



	Z00100

	Farrah

	Adeel

	Len

	123

	N main st

	burbank

	ca

	91505



	Z00100

	Farrah

	Adeel

	Doe

	123

	N main st

	burbank

	ca

	91505






After compound last names are handled, ‘App FE’ executes general name feature engineering. ‘MultiLabelBinarizer` is used to convert the set of targets to, an array-like object, a binary matrix indicating the presence of a class - in this case each race/ethnicity. Targets associated with each record are one hot encoded using ‘MultiLabelBinarizer`. Then first, middle and last name are encoded using ‘TargetEncoder’. “For the case of categorical target: features are replaced with a blend of posterior probability of the target given particular categorical value and the prior probability of the target over all the training data.”( ref [https://contrib.scikit-learn.org/category_encoders/targetencoder.html]). This is where the features such as BLACK_first_name come from.

Next the pipeline focuses on engineering of the ACS features. ‘CustomRatios’ generates ratios, percents, and linear combinations of select ACS features. After generating ACS engineered features, the pipelie resolves the many-to-one data created by the ‘Compound Name FE’ step by aggregating across expected name columns, at the unique key level.  The ACS engineered features are used as predictive variables.  Block group, tract, and ZIP code are not included as predictive variables.  This allows the model to generalize well across geographies.

Missing values are imputed using mean, for all numeric features. Lastly, the training dataset’s least missing, most unique features with the highest variance and importance are selected.



Model Creation

XGBoost 1.0.2 was used to train the model with the following hyperparameters:



	Parameter Name.

	Value.



	‘gamma’

	5



	‘learning_rate’

	0.01



	‘max_depth’

	3



	‘min_child_weight’

	500



	‘n_estimators’

	2000



	‘subsample’

	0.8



	‘objective’

	multi:softprob






Around 9.5 million names, locations, and self-reported race/ethnicities from the 2021 Florida, Georgia and North Carolina voter registration database were set aside for training.

Several models are trained:  one for Census block group, one for Census tract, and another for the ZIP code.



Prediction Process

The inputs to ZRP include name and address.  The address is used to lookup attributes of the correpsonding region.  The lookup process starts with retrieval of Census block group attributes.  If the block group lookup fails, then Census tract attributes are retrieved.  If the Census tract lookup fails, then ZIP code attributes are retrieved.  ACS attributes associated with the retrieved geographic area are then appended to the first, middle, and last name.  The resulting vector of predictors is then used as input to the corresponding model (e.g., block group, tract, or ZIP code-based model).

This ensemble model architecture can be visualized as follows:

[image: Alternative text]
Each model has a slightly different feature space, as summarized below:

ZRP features by source, counts and contribution



	Source

	Count

	% Shapley Contribution





	Individual’s Name

	15

	72.79%



	ACS Attributes

	167

	7.59%



	Engineered Ratios

	15

	19.62%



	Total

	197

	100.00%






Ex.: ZRP Top features



	Rank

	Description

	Shapley Contribution





	1

	Label encoded** Black or African American last name

	0.168



	2

	Label encoded American Indian or Alaska Native last name

	0.115



	3

	Label encoded Hispanic last name

	0.081



	4

	Label encoded White last name

	0.071



	5

	Label encoded Asian American and Pacific Islander last name

	0.048



	6

	Ratio of non-White to White

	0.046



	
	Sum of all model feature contribution

	1.000









Model Evaluation

A validation dataset was constructed using 2021 Alabama voter registration data comprised of about 235,000 randomly sampled records. Around 230,000 records had appropriate data for generating race predictions. Please refer to the Data Sampling section to review filtration criteria. The race and ethnicity class information is tabulated below for the Alabama validation dataset. The table include United States popultion estimates by race and ethnicity, these estiamtes are not indicative of the true registered voter population.



	Class

	Sample Percent

	National Estimate (%)



	Asian American and
Pacific Islander

	1.1%

	1.6%



	American Indian
and Alaskan Native

	0.3%

	0.7%



	African American
or Black

	23.6%

	26.8%



	Hispanic or Latino

	2.5%

	4.6%



	White

	72.6%

	65.3%






The benchmark models used for comparison in this section are BISG and BIFSG. We utilize the surgeo implementations for both models. Across the board, with significant class sizes, we can see ZRP outperforms BISG and BIFSG.

On the Alabama dataset, ZRP labeled more records than other methods

[image: Alternative text]
BISG falls short when proxying race or ethnicity of minority groups exhibited by low TPRs across  minority classes. Predictive performance of the ZRP model on the Alabama validation dataset is shown below:

On the Alabama dataset, ZRP is better at predicting race compared to other methods (AUC metric)

[image: Alternative text]
On the Alabama dataset, ZRP has greater classification accuracy

[image: Alternative text]
On the Alabama dataset, ZRP Outperforms BISG and BIFSG even when holding name lists constant

[image: Alternative text]
We additionally complete validation studies of ZRP using Louisiana voter registration data and PPP Loan Forgiveness data (courtesy of Dr. Sabrina Howell [https://www.stern.nyu.edu/faculty/bio/sabrina-howell] at NYU. The results of the extended study can be found in our ZRP Validation Experiments’ Results [https://github.com/zestai/zrp/blob/main/supporting_docs/validation_experiment_results.rst].



Model Limitations

This model is designed to predict race/ethnicity based on names and addresses of people residing in the United States only.





            

          

      

      

    

  

    
      
          
            
  

            

          

      

      

    

  

    
      
          
            
  
Preparing A New Release


Context

There are two facests to providing new ZRP releases. This is because the ZRP requires additional files to function that aren’t available when you git clone or pip install. This is due to the fact that the pre-build pipelines and lookup tables that the ZRP requires are rather large and aren’t able to be stored conventionally on github. We, thus, utilize Github’s Releases functionality to bundle the souce code as a release, and with it, attach two zip files: 1) the lookup tables, and 2) the pipelines.

The additional lookup tables and pipelines are installed after you pip install or clone the package by running the zrp modeule, download.py. This module downloads the two zips, unzips them, files the contents, and then removes the unnecessary downloaded folders. Ultimately, after running this module (steps shown in the README), the acs and geo lookup tables will be stored with the following paths:

zrp/data/processed/acs/{acs_year}/{acs_range}/*.parquet

Ex.: zrp/zrp/data/processed/acs/2019/5yr/processed_Zest_ACS_Lookup_20195yr_blockgroup.parquet

zrp/data/processed/geo/{geo_year}/*.parquet

Ex.: zrp/zrp/data/processed/geo/2019/Zest_Geo_Lookup_2019_State_01.parquet





The pipelines will be stored with the following paths:

zrp/modeling/models/{geo_level}/pipe.pkl  (where geo_level might be 'block_group', 'census_tract', or 'zip_code')

Ex.: zrp/modeling/models/block_group/pipe.pkl







Preparing the release

Observe the following steps in order to safely and correctly prepare and push new Pypi, and Github releases for the zrp packages. Note that in order to ensure continuity between all releases, every new push to the main branch should be accompanied by a new pypi and Github release with appropriate versioning (idential across the various release locations). Thus, you should always


	
	Push all changes to the Github.
	
	Ensure that the acs/, geo/ data folders, and the {geo_level}/pipe.pkl files are not tracked in git and are added to the gitignore.










	
	Follow the steps below to prepare a new Pypi package
	
	NOTE: when you follow step 2, and bump the version, not only should you bump the version in setup.py, but you must also open up zrp/about.py and set the version there to the now updated (bumped) version in setup.py










	Follow the steps below to prepare a new Github Release that includes the lookup tables and pipelines zips.






Pypi

(Reference [https://widdowquinn.github.io/coding/update-pypi-package/])


	Once you’ve updated the package source code, ensure you have an up to date local repo and push/merge all commits to Github


	
	Incremenet the version number for the package. We use the tool Bump Version [https://pypi.org/project/bumpversion/] to ensure all version numbers are kept consistent. You can install Bumpversion from PyPI:
	$ pip install bumpversion





Bumpversion is used as follows:

$ bumpversion --current-version ?.?.? [major/minor/patch] [<file_names>]





For example, to increment the MINOR version of zrp, you would do something like this (this increases the version in both setup.py and about.py):

$ bumpversion --current-version 0.1.0 minor setup.py zrp/about.py











	
	Update local packages for distribution
	python -m pip install --user --upgrade setuptools wheel
python -m pip install --user --upgrade twine











	
	Create distribution packages on your local machine, and check the dist/ directory for the new version files
	python setup.py sdist bdist_wheel
ls dist











	Remove the old package version distribution packages in ‘/dist’


	
	Upload the distribution files to pypi’s test server
	python -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*






	Check the upload on the test.pypi server [https://test.pypi.org/project/PACKAGE/VERSION/]










	
	Test the upload with a local installation
	python -m pip install --index-url https://test.pypi.org/simple/ --no-deps <PACKAGE>






	Start Python, import the package, and test the version










	
	Upload the distribution files to pypi
	python -m twine upload dist/*






	Check the upload at pypi [https://pypi.org/project///](https://pypi.org/project///)














Github Releases


	On the repo home Github page, in the right hand column, click “Releases”


	Click “Draft a new release”


	Enter the new release title in the following format: “zrp” + “-” + “VERSION”



	Ex.: “zrp-0.1.0”


	Ensure that the VERSION is the same version as the pypi deployment you just created









	Select “Choose a tag”, and generate a new tag with the same name as the title selected in step 3


	Enter in any details describing the release


	Click “Attach binaries by dropping them here or selecting them” and select the pipelines.zip and lookup_tables.zip zips you’ve generated



	pipelines.zip, when unzipped, should be a folder with the following structure:











| pipelines
| |
| |----- block_group_pipe.pkl
| |----- census_tract_pipe.pkl
| |----- zip_code_pipe.pkl







	lookup_tables.zip, when unzipped, should be a folder with the following structure (‘2019’ and ‘5yr’ may be replaced by whatever ACS year and year range is applicable for the acs lookup table data you’re uploading):







| ├── lookup_tables
| │   ├── acs
| │   │   └── 2019
| │   │       └── 5yr
| │   │           ├── processed_Zest_ACS_Lookup_20195yr_blockgroup.parquet
| │   │           ├── processed_Zest_ACS_Lookup_20195yr_tract.parquet
| │   │           └── processed_Zest_ACS_Lookup_20195yr_zip.parquet
| │   ├── geo
| │   │   └── 2019
| │   │       ├── Zest_Geo_Lookup_2019_State_01.parquet
| │   │       ├── Zest_Geo_Lookup_2019_State_02.parquet
| │   │       ├── Zest_Geo_Lookup_2019_State_04.parquet
| │   │       ├── Zest_Geo_Lookup_2019_State_05.parquet
| │   │       ├── .
| │   │       ├── .
| │   │       ├── .
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